
10

Private
Data
Methods
Objects

UI Forms

Public
Interface

Measurement DLL

Parameter entry
and display

Measurement
Form

Figure 1

ACTIVE-X DLL STRUCTURE

In the RSMS-4G architecture, the instrument, measurement, extraneous measurement, antenna
pointing, and triggering routines will be implemented as ActiveX DLL components containing
objects that may be instantiated at runtime. Each ActiveX DLL will contain three sections: 1) a
public interface, 2) private data, methods, and objects, and 3) user interface forms.

I. MEASUREMENT METHOD COMPONENT: The measurement-method component will
be implemented as shown in Figure 1 and sectioned into the three sections as follows:
A. Private methods and data:

1. clsPreSelMngr: each measurement public interface object can (but is not required
to) instantiate their own copy of the class of type clsPreSelMngr and then call
Property Set SysConfigObj to pass it a reference to an object of type
clsConfigPubInterface. The object of type clsPreSelMngr is particularly useful for
controlling a variety of preselectors without having to customize the code for each
type of preselector. This also eliminates the need to recompile the measurement
DLL code each time a new preselector is added to the repertoire of instruments.

2. clsCallBack: this class is contained in the RSMS4Gtypelib.DLL, the latter of which
is referenced by the measurement DLL projects. A single object of this class will be
instantiated and sent by reference to each instrument DLL in the signal path by
sending it through the corresponding object of class clsInstPubInterface (using

11

property CallBackObj). When it is deemed necessary to send an error message to
the calling measurement DLL, the object of class clsInstPubInterface will call Sub
MeasError of the Call-Back object. The object of class clsCallBack then raises an
event and relays the error information, which is then trapped by the form
frmMeasForm for further evaluation. A unique ID, which is the same as the Access
ID described in Function GetInstPubInterface of class clsConfigPubInterface, is
passed by argument to the object for which the CallBack object is passed. This is
used by the instrument DLL to identify itself when calling certain subroutines
within the object of type clsCallBack; this is so the instantiating object knows who
made the call. It is therefore the responsibility of the measurement DLL to keep
track of which ID is associated with which instrument.

A second object of type clsCallBack will be declared (but not instantiated) in the
object of type clsMeasPubInterface. A reference to an object of type clsCallBack
will be passed to the interface, from an executor, by calling Property Set
CallBackObj. As discussed in the documentation for the CallBack class, this will be
used to raise various event to the executor.

3. clsDocker: this class is contained in the RSMS4Gtypelib.DLL, the latter of which is
referenced by the measurement DLL projects; the class will be included (declared
but not instantiated) in each of the measurement DLL projects. Its purpose is to
provide instructions, when queried, as to where to dock the measurement form
when placed in Reduced Passive Display mode. This object is vital to the operation
of the measurementDLL and must be obtained by the measurement form prior to
use. A single object of this class will be instantiated by the system configuration
package and made available by reference to measurement DLLs by calling the
Property Get Docker() in the object of type clsConfigPubInterface.

4. clsConfigPubInterface: this class is contained in the SysConfigLib.DLL, the latter
of which is referenced by the measurement DLL projects; the class will be included
(declared but not instantiated) in each of the measurement DLL projects. Its purpose
is to provide access to the different instruments within the signal path and to obtain
information about those instruments.

5. clsCommon.cls: this class is contained in the core program subdirectory and
included in each of the measurement DLL projects.

6. Common.bas: this Basic module is contained in the core program subdirectory and
included in each of the measurement DLL projects.

7. Visa32.bas: this Basic module is contained in the core program subdirectory and
included in each of the measurement DLL projects.

8. clsMD5.cls: provides an algorithm for creating an MD5 Hash Code from a byte
array.

B. User Interface:
1. Parameter-Entry-and-Display Form: (accessible only through public interface

class clsMeasPubInterface, i.e., cannot be instantiated outside the DLL) provides a
user interface for two usage modes:
a. Data-preview mode: displays measurement parameter settings of measurement

12

data (of which the values cannot be changed).
b. Measurement-setup mode: displays and allows editing of the current

measurement parameter settings or entry of new parameters. Parameters are
stored as local members and packaged as a byte array using a local parameter
packaging/un-packaging method, the format of which is described in
subroutine MeasParamPackaging within clsMeasPubInterface. In this mode,
the user has the options of asserting the current settings, saving the settings to
file, and recalling the settings from file. “Asserting the Current Settings” has
different meaning depending upon the context upon which it is used; when
setting up for a scheduled event, it means the parameters are packaged up and
sent back to the schedule editor to be used later when executing an event;
when setting up for an interactive-automated measurement, it means the
parameters are sent back to the Measurement Form for implementation of the
measurement procedure. NEED TO MAKE A NOTE ABOUT TRAPPING
THE EVENT SettingsChanged IN THE CallBack CLASS.

When this form is closed, it becomes hidden but remains instantiated. It will only be
set to “Nothing” when the object of type clsMeasPubInterface is set to “Nothing”.

2. Measurement Form: (accessible only through public interface class
clsMeasPubInterface, i.e., cannot be instantiated outside the DLL) contains methods
for execution of the specified measurement. This form controls instruments via
ActiveX-instrument components made known through a form of type
frmSystemConfig (in the System Configuration Package). This form contains
information about each discrete RF component and controllable instruments
required to receive the signal, including information about proper bus connections.
Access to individual instrument controls is accomplished by first calling Property
ComponentList within the object of clsConfigPubInterface to obtain a list of
components in the signal path. By using information in the component list,
references to individual objects of clsInstPubInterface can be obtained, and in turn,
references to the corresponding command/query objects is made available.
References to the individual instrument public interfaces is obtained by calling
Function GetInstPubInterface of class clsConfigPubInterface. MAKE A NOTE
ABOUT NOT USING vbModal AND ALLOWING CHANGE IN FOCUS
FROM THE MEASUREMENT FORM.
a. Display modes: There are 3 different display modes for every measurement

form.:
(1) Full Interactive Display: this has all of the features of the measurement

form, including data display, control buttons, and indicators. This
display can be minimized to the toolbar or put into “Reduced Passive
Display” by right clicking on display

(2) Reduced Passive Display: this has the measurement data display but no
control / query buttons or menus. It is reduced in size with the following
dimensions:
(a) Form: Width: 2000, Height 1500

13

(b) Graph: Width: 1800, Height: 1000

and docked at the edge of the main rsms4g form. This is used to observe the
instrument display without taking up as much screen real estate. This display
can be minimized to the toolbar or can be returned to the default display mode
by right clicking on display. There is minimal information displayed, but a
title bar should be present to identify the measurement. Format for this form
can be imported from a format file that is generated by the National
Instruments software.

(3) Minimized: The instrument form is minimized to the toolbar and will
have an indicator of measurement progress (see below).

(a) When minimized, no commands sent to the virtual panel will be
executed. All commands and queries must be executed by calling
methods in the command/query object only.

(b) When minimized, the Virtual panel will also stop sending any
commands to the instrument.

DO I NEED TO HAVE FORM USAGE MODE SET THROUGH A SUBROUTINE.

b. Usage modes: The measurement form also provides a user interface for five
usage modes:

(1) Stealth Mode: In this mode all of the classes and forms are instantiated
but no forms are displayed. This is the default mode when the object of
type clsMeasPubInterface is instantiated and is used primarily during the
retrieval of data for the purpose of processing without displaying.

(2) Data-preview Mode: display previously acquired measurement data and
information (during which the values cannot be changed and some
buttons are disabled) Defaults to Full Interactive Display with specified
controls, buttons, and menus disabled. Can be put in Reduced Passive
Display mode or minimized.

At the onset of this mode, the object of type clsMeasPubInterface
instantiates an object of type clsCallBack and passes a reference of the
call-back object to each of the instruments in the signal path by calling
the Property Set CallBackObj in the object of type clsInstPubInterface.

(3) Interactive-Measurement Mode: (Defaults to Full Interactive Display
mode with the capability to put it into Reduced Passive Display mode or
to minimize). displays the current settings, allows the user to enter new
settings, and/or interactively control the execution of an automated/semi-
automated measurement for the purpose of saving data. Upon
completion of the automated measurement, all instrument access IDs
are immediately relinquished, all references to objects of type
clsInstPubInterface are set to “Nothing”, and the data is saved to file
at the users request but the form remains visible until closed by the

14

user. If the user wishes to perform a measurement again before
closing the window, access to each instrument must once again be
requested and granted prior to use of the instrument. In order to save
the data, the form frmIntAutExec must be notified about measurement
completion by calling subroutine SaveMeasData() in the object of
clsCallBack (see UML sequence diagram - Figure 1.7). The interactive-
automated executor then calls the Property MeasData() to obtain the
measurement data. The call-back object is instantiated in the interactive-
automated executor and passed by reference to the measurement DLL
(not the same as the call-back object instantiated in the measurement
DLL and passed by reference to the various instrument DLLs). Closure
of the measurement is accomplish by asserting a “close” option
(including “X” in the right upper corner of the window). In turn, the
subroutine CloseMeas() of the object of type clsCallBack is called. The
call-back object then raises the event MeasShutDwn() in the form
frmIntAutExec, which in turn, deallocates the particular measurement
public interface object (clsMeasPubInterface) by setting it to “Nothing”.
Since only one measurement runs at at time, no ID is necessary.

If there is more than one instrument of the same type (e.g., two spectrum
analyzers) in the signal path, a window is displayed so that the user can
choose which instrument to use for the measurement.

At the onset of this mode, the object of type clsMeasPubInterface
instantiates an object of type clsCallBack and passes a reference of the
call-back object to each of the instruments in the signal path by calling
the Property Set CallBackObj in the object of type clsInstPubInterface.

(4) Observation Mode: allows the user to observe the data during event-
scheduled measurements (during which some of the buttons are disabled,
and parameters cannot be changed). Defaults to Reduced Passive
Display mode with the capability to put into Full Interactive Display
mode or to minimize.

(5) Event-Setup Mode: allow the user to set up measurement parameters and
then apply the settings when building an event. It can also be used when
building an elaborated event to display the current parameter settings and
to give the user the option of changing the current settings. In this mode,
the measurement form is hidden and only the Parameter-Entry-and-
Display Form is made visible. When the user is setting up an event in
the event editor, each of the virtual panels in the signal path will be
accessible and the user will set up each instrument and the measurement
as desired. Then when the user saves the event to file, the editor queries
the settings of each of the instrument DLLs, as well as, the measurement
DLL. While placed in event-setup mode, any call to Property Get

15

MeasData() will bring up a message box saying “No data available”

If there is more than one instrument of the same type (e.g., two spectrum
analyzers) in the signal path, a window is displayed so that the user can
choose which instrument to use for the measurement.

Prior to execution of a measurement, the measurement routine should query
each instrument in the signal path as to whether it is in “dynamic” or “static
mode”; this is accomplished by calling Property Get StaticVsDyn() in the
object of clsInstPubInterface. A decision can then be made as to whether to
grant the user (staff member) the right to have dynamic control of the
instrument. If designated as “static”, the instrument, during automated
measurements, stays in the setup state determined by the user, where the state
is set either during schedule editing or prior to an interactive-automated
measurement. If designated as “dynamic”, the measurement DLL is given the
permission to alter the state of the instrument during execution of the
measurement routine. There is no way to prevent the measurement routine
from changing the state of the instrument even if it is designated as “static”,
and therefore, this option can be overridden if necessary. Whether the
instrument is to be designated as “static” or “dynamic” is determined at the
time the user designates the signal path in the system configuration form. The
user is automatically given this choice at the time the instrument is designated
as being in the signal path.

c. Menu Options: Standard top level menu items should be: “File”, “Edit”,
“Setup”, “Show Settings”, “Tools” - in that order. The “File” menu will be
organized as shown in the following diagram:

Besides the instrument control buttons and data-display, the Measurement-
Form will have the following standard capabilities implemented as menu
items (at the programmer discretion, buttons with the same functionality may
also bed included):

16

Figure 3

(1) Print (contained in the File menu): Enabled only for the Interactive-
Measurement mode, and the Data-preview mode, this option allows the
user to print a report quality graph of the data as illustrated in the figure
below. On the “File” menu (as illustrated above), there will be a
“Print” caption. If the data is passed by the call to Property Get
MeasStream in the object of type clsMeasPubInterface, this button will
be disabled.

(2) Save data record to ASCII file (contained in the File menu): writes the
data to a ASCII formatted text file along with the appropriate labels
(This option is only available in the data-preview mode). This is

17

accomplished by calling the Subroutine Save2ASCII() in the object of
type clsCallBack. In turn, the call-back object raises the event
Dump2ASCII(), which is trapped in either the form of type
frmSchedExecutor or frmNonSchedExecutor. The executor then has
each pertinent object write, to an ASCII file, the data for which it is
responsible for packaging. On the “File” menu (as illustrated above),
there will be an “Export” caption. If the data is passed by the call to
Property Get MeasStream in the object of type clsMeasPubInterface, this
button will be disabled.

(3) Measurement-parameters (contained in the Setup menu): enabled only
during the data-preview mode, the interactive-measurement mode, and
the observation mode, this option is used to enter and/or examine
measurement parameters using the Parameter-Entry-and-Display Form.
On the “Setup” menu, there will be an “Meas Parameters” caption.

(4) Signal-path (contained in the Edit menu): Enabled only in the
interactive-measurement mode and data-preview mode, this feature is
used to display and give focus to the form of type frmSystemConfig so
that the user can examine the current system configuration and signal
path; in interactive-measurement mode this request to see the signal path
also allows the user to make changes if necessary and to designate
individually whether each instrument (including preselector) is to be
manually set (static mode) or fully automated (dynamic mode). When in
data-preview mode, the System-Configuration-Form is also set in the
same mode, and therefore, the system configuration and signal path
cannot be changed. The request to see the signal path is accomplished
by calling the subroutine SetHrdwrCnfgAndPath() in the object of type
clsConfigPubInterface to show and set the focus of the form of type
frmSystemConfig. If, while in the interactive-measurement mode, any
change is made to the signal path (including change from static or
dynamic mode), the object of clsConfigPubInterface raises the event
SigPathChanged() which is then trapped by the form of type
frmNonSchedExecutor. The interactive-automated executor then
notifies, via subroutine PathHasChngd(), any active measurement DLL,
extraneous-measurement DLL, and/or antenna-position-control DLL that
the path has changed. Should this occur, each of the DLLs immediately
relinquish all instrument Access IDs, each reference to an object of type
clsInstPubInterface is set to “Nothing”, and then access rights are re-
established for all necessary instruments for which control is required.
On the “Edit”menu, there will be a “Signal Path” caption.

If more than one instrument of the same category is required for the
measurement, then during measurement setup, the user will be queried

18

as to which instrument in the signal path is to be used for which
operation.

(5) Re-measure (contained in the Tools menu): Enabled only in the data-
display mode, this option executes the measurement using the same
parameters contained in the file being examined (provided the system
hardware configuration is the same - i.e., the MD5 Hash Codes of the
hardware configuration is the same as that stored in the signal-flow-path
section of the data record). If the data was acquired through the
scheduler, the measurement will be re-executed by calling up the
scheduler using the same scheduler file and, highlighting the specific
elaborated event and executing the specific event. This is made possible
by the fact that the scheduler file and MD5 Hash Code of the elaborated
event is stored in the data record. If the measurement was performed
using the measurement form in the interactive-measurement mode, there
is no scheduler file stored in the data file, and therefore, the
measurement can be repeated using the measurement form in the same
interactive mode. Re-measurement is accomplished by calling
Subroutine ReMeasure() in the object of type clsCallBack. The call-back
object then raises the event DoReMeas() which is trapped in either the
form of type frmSchedExecutor or frmNonSchedExecutor. The executor
then calls all the appropriate objects to re-measure with the same settings
contained in the data record. On the “Tools“ menu, there will be a
“Remeasure” caption.

(6) Start-, pause-, and abort-measurement buttons (located as buttons on a
toolbar as illustrated below): - Used to “start”, “pause”, “abort”, and/or

“abort and close” the measurement. (The “start” and “abort” options are
only enabled in the interactive-measurement mode but the “pause”, and
“abort and close” options are available in both the interactive-
measurement modes and the Observation Mode). The “abort” command
simply stops the measurement but allows the user to start anew in the
same window; the “abort and close” command stops the measurement,
deallocates the object of type clsInstPubInterface, and aborts (for that
measurement) any intent to save data to file. In the “abort and close”
case, “closing” is accomplished by calling Subroutine CloseMeas() in
the object of clsCallBack (See UML sequence diagram -Figure 1.8). The
call-back object raises the event MeasShutDwn() in either the form of
type frmSchedExecutor or frmNonSchedExecutor, which in turn,
deallocates the particular measurement public interface object

19

(clsMeasPubInterface) by setting it to “Nothing”. For scheduled
measurement that has been aborted and closed, the scheduler then
proceeds to the next measurement in the queue.

(7) Close (including “X” in right upper corner of the window): this option
will be disabled in all of the usage modes except interactive-
measurement mode and will only be enabled when the interactive-
automated measurement is complete and the data has been written
to file. In the remaining cases, the forms will be closed as the object of
clsInstPubInterface is set to “Nothing” by other objects or when the user
asserts the “abort and close” option. The “close” option is implemented
by a call to the subroutine CloseMeas() of the object of type clsCallBack.
The call-back object then raises the event MeasShutDwn() in the form
frmIntAutExec, which in turn, deallocates the particular measurement
public interface object (clsMeasPubInterface) by setting it to “Nothing”.
The same procedure is implemented for the “abort and close” option, but
in the case of the “close” option, the data is already saved to file.

C. Public Interface:

1. Public-Interface Class: provides public access to forms, classes, and their
associated methods and members. When instantiated, this object immediately
instantiates the appropriate forms and automatically goes into stealth mode. Data
can be sent to file and errors can be sent back to the forms of type
frmNonSchedExecutor or frmSchedExecutor by calling the subroutine MeasError()
in the object of type clsCallBack. This class will have a standard name called
clsMeasPubInterface (instancing = “multiuse”). MAKE A NOTE HERE
ABOUT IMPLEMENTATION OF IGenMeasurment

Event Trapping: Assuming the instantiation of an object “m_CallBack” of type
clsCallBack as follows:

Private Withevents m_CallBack As clsCallBack,

the following subroutines are implemented to trap raised events:

a. Private Sub m_CallBack_SetSignalPath(): This is used to trap the event
raised in the object of type clsCallBack requesting to see the signal path and
system configuration. The object of type clsMeasPubInterface then calls
SetHrdwrCnfgAndPath in the object of type clsConfigPubInterface to show
and give focus to the form of type frmSystemConfig. (See UML sequence
diagram - Figure 1.5)

b. Private Sub m_CallBack SetInstError(ByRef ErrData As ErrUDT, ByVal
vID As Integer): This is used to trap the event relaying error information,
raised in the object of type clsCallBack. The error information is passed via
the user-defined type ErrUDT defined in object of type clsCommon. Once the
event is trapped, it left to the object of type clsMeasPubInterface to determine

20

what type of action is to take place (i.e. disregard, resolve problem, try again,
raise an event in the measurement executor, etc.) The argument "vID" is used
to 'identify the particular instrument making the request and is the same ID
received 'when passed the call-back object by calling Sub SetCallBackObj in
the instrument 'interface object.

Public Methods: Class clsMeasPubInterface will have the following public
methods:

a. Public Sub SetCallBackObj(ByRef vCallBackObj As clsCallBack, ByVal
vID As Integer): passes by reference an object of class clsCallBack. This
object can be used to relay to the instantiating object such things as errors, and
request to see the signal path. The argument vID is a unique ID given to the
object for which the CallBack object is passed. This is used by the
measurement DLL to identify itself when calling certain subroutines within
the object of type clsCallBack so that the instantiating object knows who made
the call. This object is vital to the operation of the instrument DLL and must
be passed to it prior to use.

b. Public Property Set MsgHndlr(ByRef MsgHndlrObj As
clsMessageHandler): This property passes an object of type
clsMessageHandler to the individual measurements so that messages can be
displayed. Errors can be displayed but errors should also be passed throught
the object of type clsCallBack so that they can be handeled properly.

c. Public Property Set SysConfigObj(ByRef vSysConfigObj As
clsConfigPubInterface): passes by reference an object of class
clsConfigPubInterface. This object This object is vital to the operation of the
instrument DLL and must be passed to it prior to use.

d. Public Function MeasName() As String: returns a string that designates the
name of the measurement (e.g., Stept, SweptM3, etc.)

e. Public Property Let AssocCals(ByRef CalList()As String): This property
sends an array of strings containing information about calibrations (or
measurements) that are to be associated with the this measurement. If there
are no calibrations (or measurements) to be associated with this measurement,
the list is empty. Each string contains the user-defined calibration (or
measurement) name and the DLL file name of the measurement or instrument
(for data dumps) that was responsible for acquiring the associated data. The
calibration (or measurement) name and the DLL name are separated by a
semicolon and there should be no spaces after the semicolon. Example:

StepMeas 2.123-2.312 GHz;Stepped.dll

This subroutine is must be called by the measurement executor prior to
requesting a measurement to be performed.

21

f. Public Subroutine PassCalCore (ByRef CoreData() As Byte, ByRef
FrmtColmns as Integer, ByRef FrmtRows as Long, ByRef FrmtMode as
Integer, ByRef FrmtVarType() as Integer, ByRef FrmtVarLabels() as
VarLabels, ByRef FrmVarUnits As VarUnits) As Byte(): The subroutine
passes, by argument, an array of bytes containing only the data - without a
header - the purpose being to provide un-packaged data for use. The data will
represent the actual value and will not require scaling and/or offset. The data
will also be raw, meaning that it is not corrected by any calibration factor. All
independent and dependent variables will have the same vector length, so that,
for every value in the independent variable, there are corresponding values in
each dependent variable. The array of bytes is formatted in a manner
described by the variables in the argument list. These are as follows:

(1) FrmtColmns: This is an integer returned by reference that designates the
number of data variables (columns).

(2) FrmtRows: This is a long integer returned by reference that designates
the number of data points for the variables (rows).

(3) FrmtMode: This is an integer returned by reference that designates the
manner in which the variables are placed in the byte array. Mode = 0
designates a block mode in which all data of the first variable is put into
the byte array, followed by all of the data of the second variable, etc.
Mode = 1 designates interleaved mode in which the byte array is
organized with the first data point of all of the variables, followed by the
second data point of all of the variables, etc.

(4) FrmtVarType: This is an array of integer (array length equal to
FrmtColmns) returned by reference that designates the variable type for
the different columns of data. These variables are designated by the
following:

(a) 1 = two byte integer

(b) 2 = four byte integer

(c) 3 = four byte IEEE floating point

(d) 4 = eight byte IEEE floating point

(5) FrmtVarLabels: This is an array of enumerated type VarLabels (defined
in clsCommon) returned by reference that contains the column labels.
Index “1" refers to column “1”.

(6) FrmtVarUnits: This is an array of enumerated type VarUnits (defined in
clsCommon) returned by reference that contains the units of the column.
Index “1" refers to column “1”. This function should only be called if
the 10th item in the record header indicates that the record is
“packaged”, as apposed to “streamed”.

g. Public Sub DoInteractiveMeas(): Setting to interactive-measurement mode,

22

this subroutine instantiates and shows the Measurement Form for interactive
control of an automated measurement. Once the measurement is started by the
user, it will run automatically until complete (or interrupted by the user).
Once complete the routine will call subroutine SaveMeasData() in the object
of type clsCallBack. (See UML sequence diagram - Figure 1.7) The call-back
object will, in turn, raise an event to be trapped in form frmIntAutExec, The
interactive-automated executor then calls Property Get MeasData() and
Property Get Params() of the clsMeasPubInterface object for the purpose of
obtaining the measurement data and parameters respectively. The form of
type frmMeasForm, however, remains open until the user closes it. The
“close” option is implemented by a call to the subroutine CloseMeas() of the
object of type clsCallBack. The call-back object then raises the event
MeasShutDwn() in the form frmIntAutExec, which in turn, deallocates the
particular measurement public interface object (clsMeasPubInterface) by
setting it to “Nothing”. The same procedure is implemented for the “abort and
close” option, but in the case of the “close” option, the data is saved to file
prior to closing.

Property Let AssocCals in the object of type clsMeasPubInterface must be
called prior to making a call to do a measurement.

Because the measurement may require loops that tie up the focus for long
periods of time, the Visual Basic function DoEvents will be placed in these
loops to allow branching to events as they occur.

h. Public Sub DoSchdMeas(MeasParams() As Byte): Setting to Observation
mode, this subroutine executes a scheduled measurement. The argument
MeasParams(), which provides the parameter settings for the measurement, is
passed as a byte array, originally packaged by the object of
clsMeasPubInterface and obtained using the Property Get Params().
Contained within the header of MeasParams is a list of all instruments within
the signal path which are to be controlled by this measurement. Any
ambiguities with regard to multiple instruments of the same type will already
have been resolved by the user when setting up the scheduled event. The serial
number of the instrument is included in this information and can be used if
there are two instrument of the same model type within the signal path.

Property Let AssocCals in the object of type clsMeasPubInterface must be
called prior to making a call to do a measurement.

Once the measurement is complete, the subroutine will exit and return the
focus to the calling routine. Thereafter, the measurement data can be obtained
by calling Property Get MeasData() of the clsMeasPubInterface object.

i. Public Sub EventSetup(): Setting to event-setup mode, this subroutine opens
the Parameter-Entry-and-Display Form so that the user can enter
measurement parameters to be used for a scheduled event. When complete,
the user asserts the apply-parameters option which simply closes the form but

23

keeps it instantiated. When the user asserts the “save event” option or the
“save elaborated event” in the event editor or schedule editor respectively, a
call to Property Get Params() of type clsMeasPubInterface is executed in
order to get the parameters.

j. Public Sub DisplayData(ByRef AcqData() As Byte, ByRef
ParameterSettings() As Byte): Setting to data-preview mode, this subroutine
passes, to the interface object, the acquired data (AcqData()) and measurement
parameters (ParameterSettings()) as arguments. The interface object then
passes to the measurement form the data byte array, which is parsed into
meaningful information, and displayed for examination. The
ParameterSettings argument is passed to the Parameter-Entry-and-Display
Form; this form is placed in Data-preview mode and then given the task of
un-packaging the byte array to create meaningful information and to display
the parameters to the user. For data gathered by calling Property Get
MeasStream, the argument AcqData will have an array size of “1" containing
a value of “0” and the Measurement form will display a message that says
“Data streamed - not available for viewing.”

k. Public Sub ParseData(ByRef AcqData() As Byte, ByRef ParameterSettings()
As Byte): Setting to stealth mode, this subroutine passes, to the interface
object, the acquired data (AcqData()) and measurement parameters
(ParameterSettings()) as arguments. The interface object then passes to the
measurement form the data byte array, which is parsed into meaningful
information. The ParameterSettings argument is passed to the Parameter-
Entry-and-Display Form and then given the task of un-packaging the byte
array to create meaningful information. The primary use for this subroutine is
to interpret data into meaningful information that can be used for data
processing by calling Function GetCoreData in the measurement public
interface class. For data gathered by calling Property Get MeasStream, the
argument AcqData will have an array size of “1" containing a value of “0” and
the Measurement form will display a message that says “Data streamed - not
available for viewing.”

l. Public Sub ParseParams(ByRef ParameterSettings() As Byte): Setting to
Event-Setup Mode, this subroutine passes, to the interface object, the
measurement parameters (ParameterSettings()) as an argument. In this
Event-Setup Mode, the measurement form is hidden and only the Parameter-
Entry-and-Display Form is made visible. The ParameterSettings argument
(originally created when calling Property Get Params) is passed to the
Parameter-Entry-and-Display Form and then given the task of un-packaging
the byte array to create meaningful information. The primary use for this
subroutine is to interpret parameter settings into meaningful information that
can be used to set up measurement parameters and then apply the settings
when building an event. It can also be used when building an elaborated event
to display certain parameter settings from a previous measurement and to give

24

the user the option of changing the settings.

m. Public Property Get PkgType () As Integer: returns an integer which indicates
the method by which data is to be passed. When PkgType = 0, the data is
packaged as byte array and the executor should call Property Get MeasData
in the object of type clsMeasPubInterface to retrieve the packaged data and, in
turn, call Sub WriteDataRecord to pass the data on to the File I/O Manager.
When PkgType = 1, the data, including header, is contained in a temporary
holding file in which large quantities of data were streamed. In this latter case,
the executor should retrieve the file name by calling Property Get MeasStream
in the object of type clsMeasPubInterface and then pass it on to the File I/O
Manager by calling Sub WriteDataStream.

n. Public Property Get MeasData() As Byte(): This property should be called by
the executor only after calling Property Get PkgType in the object of type
clsMeasPubInterface and receiving a return value of “0". The implementation
of this property is mutually exclusive to Property Get MeasStream. In other
words, only one of the two properties “Get MeasStream” and “Get MeasData”
is implemented in agreement with Property Get PkgType. The other shows an
error if called. This property returns, for either scheduled measurements or
interactive-automated measurements, data packaged as a byte array with the
following four required header entries located at the beginning of the array:

(1) A preamble containing the following characters:
“RSMS4G_DataPreamble”. The preamble is preceded by a carriage
return (hex 0d), a linefeed (hex 0a), another carriage return (hex 0d) ,
and another linefeed (hex 0a) to mark the beginning. In addition, the
preamble is followed by a null character (hex 0) to mark the end.

(2) A version number to designate the version of the data packaging. There
may be more than one way in which the data are packaged into a byte
array. Each method is associated with a version. The version number is
represented by numeric characters followed by a null character (hex 0) to
mark the end of the string.

(3) The name of the Measurement ActiveX file responsible for packaging
the information, followed by a null character (hex 0) to mark the end of
the file name. (e.g., Stepped.DLL)

(4) The number of bytes in the data package (including these three header
entries). The number of bytes is represented by numeric characters
followed by a null character (hex 0) to mark the end of the string. A
variable length entry could result in a recursive situation, whereby the
actual byte length is changed as this entry is added to the header.
Therefore, this entry should consist of a fixed number of numeric
characters, the length of which exceeds the number of digits required to
represent the maximum possible size of the byte array that could be
passed back during the call to this property. Significant figures should

25

be proceeded by zeros. (e.g., 0000532).

Following the header information are the data packaged according to the
description provided by subroutine DataPackaging (documented in this
section). At the end of the Data is a 32 bit CRC Code for the data only
(to identify data corruption). Code for the CRC32 algorithm is located
in Common.bas. The code takes an array of bytes as input and computes
a 32-bit "checksum". To use the algorithm, call InitialiseCRC32tab and
then call GetCRC32ForByteArray(Bytes).

o. Public Property Get MeasStream() As String: This property should be called
by the executor only after calling Property Get PkgType in the object of type
clsMeasPubInterface and receiving a return value of “1". The implementation
of this property is mutually exclusive to Property Get MeasData. In other
words, only one of the two properties “Get MeasStream” and “Get MeasData”
is implemented in agreement with Property Get PkgType. The other shows an
error if called. This property returns, for either scheduled measurements or
interactive-automated measurements, the full path and file name of a
temporary file where the data has been streamed and which contains a header
with the following four required entries located at the beginning of the file:

(1) A preamble containing the following characters:
“RSMS4G_DataPreamble”. The preamble is preceded by a carriage
return (hex 0d), a linefeed (hex 0a), another carriage return (hex 0d) ,
and another linefeed (hex 0a) to mark the beginning. In addition, the
preamble is followed by a null character (hex 0) to mark the end.

(2) A version number to designate the version of the data packaging. There
may be more than one way in which the data are packaged into a byte
array. Each method is associated with a version. The version number is
represented by numeric characters followed by a null character (hex 0) to
mark the end of the string.

(3) The name of the Measurement ActiveX file responsible for packaging
the information, followed by a null character (hex 0) to mark the end of
the file name. (e.g., Stepped.DLL)

(4) The number of bytes in the data package (including these three header
entries). The number of bytes is represented by numeric characters
followed by a null character (hex 0) to mark the end of the string. A
variable length entry could result in a recursive situation, whereby the
actual byte length is changed as this entry is added to the header.
Therefore, this entry should consist of a fixed number of numeric
characters, the length of which exceeds the number of digits required to
represent the maximum possible size of the byte array that could be
passed back during the call to this property. Significant figures should

26

be proceeded by zeros. (e.g., 0000532).

Following the header information are the data packaged according to the
description provided by subroutine DataPackaging (documented in this
section). At the end of the Data is a 32 bit CRC Code for the data only
(to identify data corruption). Code for the CRC32 algorithm is located
in Common.bas. The code takes an array of bytes as input and computes
a 32-bit "checksum". To use the algorithm, call InitialiseCRC32tab and
then call GetCRC32ForByteArray(Bytes).

p. Public Sub DataPackaging(ByRef PathAndFile As String): Whether
packaged as a byte array or streamed to a temporary holding file, this
subroutine opens and append to an ASCII file designated by PathAndFile (full
path and file name), the data packaging for each version of the particular
measurement type. The format of the output will be as follows, where quotes
designate a required title, strings inclosed in <> designate the value, and words
in italics simply give an explanation and are not part of the output:

I) “MEASUREMENT-DATA PACKAGING” this is a title for the section.

A) “ FOR:” this is a subtitle - indented X 1.

1) “ Measurement Type: ” <string> where the sting represents a
description of the measurement type - indented X 2.

2) “ Measurement-Data Packaging Version: ” <value> where
“value” represents the version number of the measurement-data
packaging - integers only - indented X 2 .

3) “ Date version originated: ” <MM-DD-YY> where MM=
month, DD=day, YY=year, and must be represented by two digits
for each value. (e.g., Date version originated 01-15-03) - indented
X 2.

B) “FORMAT:” this is a subtitle - indented X 1

1) “DATA HEADER:” this is a subtitle - indented X 2

“ Header var #1 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Header var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Header var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the header variable,
description is a string describing what the variable

27

represents, and units is a string describing the units.

2) “DATA:” this is a subtitle - indented X 2

a) “Number of Variables: ” <value> where value represents
the number of independent and dependent data variables -
indented X 3.

b) Description of the variables:

“ Variable #1 ” <description>; <type>; <# of bytes>; ,
(<units>) - indented X 3

“ Variable #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Variable #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the variable, description is
a string describing what the variable represents, and units is
a string describing the units.

c) “ Order ” <sequential | alternated> where the order is
either sequential (all of the values for variable #1 written
first, then all the values for variable #2, etc) or alternated
(first value of all variables written first, followed by second
value of all variables, etc.) - indented X 3

3) “DATA FOOTER:” this is a subtitle - indented X 2

“ Footer var #1 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Footer var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Footer var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the footer variable,
description is a string describing what the variable
represents, and units is a string describing the units.

EXAMPLE:

MEASUREMENT-DATA PACKAGING

FOR:

28

Measurement Type: Swept M3

Measurement-Data Packaging Version: 1

Date version originated: 01-23-03

FORMAT:

DATA HEADER:

Header Var #1: Preamble; character bytes “RSMS4G_DataPreamble”; bytes array
proceded by a carriage return (hex 0d), a linefeed (hex 0a), another carriage return
(hex 0d), and another linefeed (hex 0a) and terminated with a null character (hex
00); variable;(none)

Header Var #2: version number; numerical characters terminated with a null
character; variable;(none)

Header Var #3: Measurement ActiveX file responsible for packaging the
information; characters terminated with a null character; variable; (none)

Header Var #4: number of data bytes - including data header; data; and data footer;
numerical characters terminated with a null character; variable;(none)

DATA:

Number of Variables: 3

Variable #1: Frequency; double; 8 bytes; (MHz)

Variable #2: Magnitude; double; 8 bytes; (dBm)

Variable #3: Phase; double; 8 bytes; (degrees)

Order: alternated

DATA FOOTER

Footer var #1: CRC of data; byte array; 4;(none)

MEASUREMENT-DATA PACKAGING

FOR:

Measurement Type: Swept M3

Measurement-Data PackagingVersion: 2

Date version originated: 06-10-03

FORMAT:

DATA HEADER:

Header Var #1: Preamble; character array “RSMS4G_DataPreamble”; byte array
preceded by a carriage return (hex 0d), a linefeed (hex 0a), another carriage return
(hex 0d), and another linefeed (hex 0a) and terminated with a null character (hex
00); variable;(none)

Header Var #2: version number; numerical characters terminated with a null

29

character; variable;(none)

Header Var #3: Measurement ActiveX file responsible for packaging the
information; characters terminated with a null character; variable; (none)

Header Var #4: number of data bytes - including data header; data; and data footer;
numerical characters terminated with a null character; variable;(none)

DATA:

Number of Variables: 3

Variable #1: Frequency; double; 8 bytes; (MHz)

Variable #2: Real Component; double; 8 bytes; (dBm)

Variable #3: Imaginary Component; double; 8 bytes; (dBm)

Order: sequential

DATA FOOTER

Footer #1: CRC of data; byte array; 4;(none)

q. Public Sub MeasData2ASCII(ByRef DataVal() as Byte, ByRef FileAndPath
As String): receives by reference, through argument DataVal, a byte array
containing a measurement data (originally obtained through Property Get
MeasData() from the object of type clsMeasPubInterface), un-packages the
byte array to create meaningful information (based upon the version number),
opens, for appending, the file designated by the argument FileAndPath, writes
the measurement data along with appropriate labels to an ASCII file, and then
closes the file. This subroutine will not be called if the original data was
obtained by calling Property Get MeasStream.

r. Public Property Get Params() As Byte(): returns the parameter settings for
the measurement. The information is packaged as an array of bytes that can be
written directly to an event file. At the beginning of the byte array, there are
five required pieces of information contained in a header:

(1) A preamble containing the following characters:
“RSMS4G_MeasParametersPreamble”. The preamble is preceded by a
carriage return (hex 0d), a linefeed (hex 0a), another carriage return
(hex 0d) , and another linefeed (hex 0a) to mark the beginning. In
addition, the preamble is followed by a null character (hex 0) to mark the
end.

(2) A version number to designate the version of parameter packaging.
There may be more than one way in which the information is packaged
into a byte array. Each method is associated with a version. The version
number is represented by numeric characters followed by a null character
(hex 0) to mark the end of the string.

(3) The name of the Measurement ActiveX file responsible for packaging

30

the information, followed by a null character (hex 0) to mark the end of
the file name. (e.g., Stepped.DLL)

(4) An array of character bytes representing each of the instruments in the
signal path controlled by this measurement (instruments for which
access was granted by calling Function GetInstPubInterface in the object
of type clsConfigPubInterface). Each instrument description is
comprised of 4 fields separated only by a single comma. Each complete
instrument description is separated by a semicolon and the last
instrument is terminated with a null character. The 4 fields in each
instrument description consists of the following (in this order):

(a) component model-name

(b) serial number

(c) category

(d) component ID.

For instance, the byte array may appear as follows:

HP8566,X23D14,Spec Analyzer,4;TEKTDS460,DS456X54,Oscilloscope,5ii
where ii represents a null character.

Each of these 4 fields is obtained through the list of signal path
instruments that is returned by calling Property Get ComponentList in
the object of type clsConfigPubInterface.

If there are no instruments controlled by this measurements, the byte
array consists of nothing more than a single null character.

(5) The number of bytes in the byte array (including these five initial header
entries). The number of bytes is represented by numeric characters
followed by a null character (hex 0) to mark the end of the string. A
variable length entry could result in a recursive situation, whereby the
actual byte length is changed as this entry is added to the header.
Therefore, this entry should consist of a fixed number of numeric
characters, the length of which exceeds the number of digits required to
represent the maximum possible size of the byte array that could be
passed back during the call to this property. Significant figures should
be proceeded by zeros. (e.g., 0000532).

This initial information is followed by the packaged parameter information
formatted according to the description provided by the subroutine
MeasParamPackaging (documented in this section).

31

s. Public Sub MeasParamPackaging(ByRef PathAndFile As String): opens
and appends to an ASCII file designated by PathAndFile (full path and file
name), the measurement-parameter packaging for the particular measurement
type. The format of the output will be as follows, where quotes designate a
required title, strings inclosed in <> designate the value, and words in italics
simply give an explanation and are not part of the output:

I) “MEASUREMENT-PARAMETER PACKAGING” this is a title for the
section.

A) “FOR:” this is a subtitle - indented X 1

1) “ Measurement Type: ” <string> where the sting represents a
description of the measurement type - indented X 2.

2) “ Measurement-Parameters Packaging Version: ” <value> where
value represents the version number of the measurement-
parameter packaging - integers only - indented X 2.

3) “ Date version originated: ” <MM-DD-YY> where MM=
month, DD=day, YY=year, and must be represented by two digits
for each value. (e.g., Date version originated 01-15-03) - indented
X 2.

B) “FORMAT:” this is a subtitle - indented X 1.

1) “MEASUREMENT-PARAMETER HEADER:” this is a
subtitle - indented X 2

“ Header var #1 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Header var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Header var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the header variable,
description is a string describing what the variable
represents, and units is a string describing the units.

2) “MEASUREMENT PARAMETERS:” this is a subtitle -
indented X 2

“Parameter #1: ” <description>; <type>; <# of
bytes>;(<units>) - indented X 3

“Parameter #2: ” <description>; <type>; <# of
bytes>;(<units>) - indented X 3

32

“Parameter #3: ” <description>; <type>; <# of
bytes>;(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the footer variable,
description is a string describing what the variable
represents, and units is a string describing the units.

3) “MEASUREMENT PARAMETER FOOTER:” this is a
subtitle - indented X 2

“ Footer var #1 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Footer var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Footer var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the footer variable,
description is a string describing what the variable
represents, and units is a string describing the units.

EXAMPLE:

MEASUREMENT-PARAMETER PACKAGING

FOR:

Measurement Type: Stepped

Measurement-Parameters-Packaging Version: 1

Date version originated: 04-15-03

FORMAT:

MEASUREMENT-PARAMETER HEADER:

Header Var #1: Preamble; character bytes “RSMS4G_MeasParametersPreamble”;
byte array preceded by a carriage return (hex 0d), a linefeed (hex 0a), another
carriage return (hex 0d), and another linefeed (hex 0a) and terminated with a null
character (hex 00) bytes; variable; (none)

Header Var #2: version number; numerical characters terminated with a null
character; variable;(none)

Header Var #3: Measurement ActiveX file responsible for packaging the
information; characters terminated with a null character; variable; (none)

Header Var #4: An array of character bytes representing each of the instruments in

33

the signal path controlled by this measurement; Each instrument description is
comprised of 4 fields (component model-name, serial number, category, and
component ID) separated only by a single comma. Each complete instrument
description is separated by a semicolon and the last instrument is terminated with a
null character; variable;(none)

Header Var #5: number of data bytes - including header, parameters, and footer;
Numerical characters terminated with a null character; variable;(none)

MEASUREMENT PARAMETERS:

Parameter #1: Spec. Analyzer Attenuation; integer; 2 bytes; (dB)

Parameter #2: Resolution BW; double; 8 bytes; (MHz)

Parameter #3: Video BW; double; 8 bytes; (MHz)

Parameter #4: Start Frequency; double; 8 bytes; (MHz)

Parameter #5: Stop Frequency; double; 8 bytes; (Hz)

MEASUREMENT-PARAMETER FOOTER:

None

MEASUREMENT-PARAMETER PACKAGING

FOR:

 Measurement Type: Stepped

Measurement-Parameters Packaging Version: 2

Date version originated: 08-20-03

FORMAT:

MEASUREMENT-PARAMETER HEADER:

Header Var #1: Preamble; character array “RSMS4G_MeasParametersPreamble”;
byte array preceded by a carriage return (hex 0d), a linefeed (hex 0a), another
carriage return (hex 0d), and another linefeed (hex 0a) and terminated with a null
character (hex 00); variable; (none)

Header Var #2: version number; numerical characters terminated with a null
character; variable;(none)

Header Var #3: Measurement ActiveX file responsible for packaging the
information; characters terminated with a null character; variable; (none)

Header Var #4: An array of character bytes representing each of the instruments in
the signal path controlled by this measurement; Each instrument description is
comprised of 4 fields (component model-name, serial number, category, and
component ID) separated only by a single comma. Each complete instrument
description is separated by a semicolon and the last instrument is terminated with a
null character; variable; (none)

34

Header Var #5: number of data bytes - including header, parameters, and footer;
numerical characters terminated with a null character; variable; (none)

MEASUREMENT PARAMETERS:

Parameter #1: Analyzer Attenuation; integer; 2 bytes; (dB)

Parameter #2: Resolution BW; double; 8 bytes; (MHz)

Parameter #3: Video BW; double; 8 bytes; (MHz)

Parameter #4: Span; double; 8 bytes; (MHz)

Parameter #5: Center Frequency; double; 8 bytes; (Hz)

MEASUREMENT-PARAMETER FOOTER:

None

t. Public Sub MeasParams2ASCII(ByRef ParamVal() as Byte,ByRef
PathAndFile As String): receives, through argument ParamVal, a byte array
containing measurement parameter information (originally obtained through
Property Get Params from the object of type clsMeasPubInterface), un-
packages the array into meaningful information (based upon the version
number), opens, for appending, the file designated by the argument
FileAndPath, writes the measurement data along with appropriate labels to an
ASCII file, and then closes the file.

u. Public Property Get MeasParamMD5() As Byte(): returns the 16 byte array
containing the MD5 Hash Code for the measurement-parameter configuration
- generated from the byte array obtained from Property Get Params()
(excluding header information). The MD5 Hash code is obtained by calling
the function DigestByteArrayToHexStr in the object of type clsMD5.

v. Public Sub PathHasChngd(): this subroutine informs the measurement DLL
that the Signal Path and possibly the System Configuration has been changed.
When this occurs the object of type clsMeasPubInterface relinquishes each of
the instruments for which it has a valid Access ID, set to “Nothing” each
reference to objects of type clsInstPubInterface, and then re-establish new
Access IDs for each instrument for which control is required. Any time this
subroutine is called, it also calls Property Set SysConfigObj in the object of
type clsPreSelMngr which then automatically re-establishes the preselector
configuration.

w. Public Sub KillMeas(): aborts the measurement. This is accomplished by
setting a variable in the measurement form which designates that any loop
should be exited and the measurement shut down gracefully. (See UML
sequence diagram - Figure 2.2 and Project “Kill Program”, the latter located
in subdirectory: c:\rsms4g\UML\TestCode\ToTestKillMeas.)

x. Public Property Let MeasFormVisibility(ByVal VisVal as Integer): sets the
visibility of the form of type frmMeasForm, where 0 = hide (remains

35

instantiated), 1 = visible.

y. Public Property Get MeasFormVisibility() as Integer: returns an integer
designating whether the form of type frmMeasForm is currently visible or not.
0 = not visible, 1 = visible.

WE SHOULD ADD SOMETHING LIKE THE FOLLOWING FOR GETTING THE
MEASUREMENT SETUP PARAMETERS

z. Public Sub PassCoreData(ByRef MeasObj as Object) pass the particular
calibartion (or other data) to the measurement object. The argument MeasObj
is an object of type IGenMeasurement.

aa. Public Function GetCoreData(ByRef FrmtColmns as Integer, ByRef
FrmtRows as Long, ByRef FrmtMode as Integer, ByRef FrmtVarType() as
Integer, ByRef FrmtVarLabels() as VarLabels, ByRef FrmVarUnits() As
VarUnits) As Byte(): This function returns an array of bytes containing only
the data - without a header - the purpose being to provide un-packaged data
for data processing routines. The data will represent the actual value and will
not require scaling and/or offset. The data will also be raw, meaning that it is
not corrected by any calibration factor. All independent and dependent
variables will have the same vector length, so that, for every value in the
independent variable, there are corresponding values in each dependent
variable. The array of bytes is formatted in a manner described by the
variables in the argument list. These are as follows:

(1) FrmtColmns: This is an integer returned by reference that designates the
number of data variables (columns).

(2) FrmtRows: This is a long integer returned by reference that designates
the number of data points for the variables (rows).

(3) FrmtMode: This is an integer returned by reference that designates the
manner in which the variables are placed in the byte array. Mode = 0
designates a block mode in which all data of the first variable is put into
the byte array, followed by all of the data of the second variable, etc.
Mode = 1 designates interleaved mode in which the byte array is
organized with the first data point of all of the variables, followed by the
second data point of all of the variables, etc.

(4) FrmtVarType: This is an array of integer (array length equal to
FrmtColmns) returned by reference that designates the variable type for
the different columns of data. These variables are designated by the
follwing:

(a) 1 = two byte integer

(b) 2 = four byte integer

(c) 3 = four byte IEEE floating point

(d) 4 = eight byte IEEE floating point

36

(5) FrmtVarLabels: This is an array of enumerated type VarLabels (defined
in clsCommon) returned by reference that contains the column labels.
Index “1" refers to column “1”.

(6) FrmtVarUnits: This is an array of enumerated type VarUnits (defined in
clsCommon) returned by reference that contains the units of the column.
Index “1" refers to column “1”.

37

Private
Data
Methods
Objects

UI Forms

Public
Interface

Instrument DLL

Instrument
Command/Query
Object

Virtual Panel

Dynamic Config

Figure 5

II. INSTRUMENT COMPONENT: The instrument component will consist of 3 basic unit and
implemented as shown in Figure 2. The three units described as follows:

A. Private methods and data:

1. Command/query class: (instancing = “PublicNotCreatable”) This class will be
automatically instantiated upon instantiation of the public interface class
clsInstPubInterface. It contains specific commands and query methods for the
purpose of controlling an instrument and/or obtaining information or data; these
methods are private and represent the implementation of one or more abstract
command/query interface classes. Access to these private methods is made available
by declaring the appropriate interface class and assigning, by reference, the
command/query object to the interface object. Access to the command/query object
is made available through the public method GetCommQueryObj contained within
the public interface class (clsInstPubInterface). The command/query object should
be passed a copy of the object of type clsCallBack; this object can be used to pass
back errors to the client (a measurement executor) and to indicate changes in an
instrument setting. For some instrument settings, it is best not to notify the callback
object every time a change is made unless indicated by the client that doing so is

38

desirable. To do so may significantly slow down the measurement process. Instead, it may be better
to have a subroutine call or an argument in the parameter list that can turn on or off the “settings-
changed” notification process for those settings which may be called frequently during a
measurement routine. For those settings that are not likely to be called frequently and repetitively, it
is desirable to notify the callback object any time the setting is changed. Any time the setting is
changed through the virtual panel, the “settings-changed” notification should (must) be sent through
the callback object; this allows the measurement DLL to know of any user initiated change.

The following list show, for different instrument type, the interface class that will be
included in the project and put in an “Implements” statement at the top of the
command/query class.

a. Spectrum analyzers: IGenSpeAnlzr.cls

b. Oscilloscopes IGenOscope.cls

c. Preselectors IGenPreSel.cls

2. Visa32.bas: this Basic module is contained in the core program subdirectory and
included in each of the instrument DLL projects.

3. VISA.bas: this Basic module is contained in the core program subdirectory and
included in each of the instrument DLL projects.

4. clsCommon.cls: this class is contained in the core program subdirectory and
included in each of the instrument DLL projects.

5. Common.bas: this Basic module is contained in the core program subdirectory and
included in each of the instrument DLL projects.

6. clsDocker: this class is contained in the RSMS4Gtypelib.DLL, the latter of which is
referenced by the measurement DLL projects; the class will be included (declared
but not instantiated) in each of the instrument DLL projects. Its purpose is to
provide instructions, when queried, as to where to dock the virtual panel form when
placed in Reduced Passive Display mode. This object is vital to the operation of the
instrument DLL and must be provided to the instrument DLL by passing a reference
to the Docker object prior to use of the instrument virtual panel. A single object of
this class will be instantiated by the system configuration package and passed by
reference to instrument DLLs by calling the Property Set Docker() in the object of
type clsInstPubInterface; this will occur immediately after instantiating the object of
type clsInstPubInterface.

7. clsCallBack: this class is contained in the RSMS4Gtypelib.DLL, the latter of which
is referenced by the measurement DLL projects; the class will be included
(declared but not instantiated) in each of the instrument DLL projects. A single
object of this class will be instantiated and sent by reference to each instrument
DLL in the signal path by sending it through the corresponding object of class
clsInstPubInterface (using property CallBackObj). When it is deemed necessary to
send an error message to the calling measurement DLL, the object of class
clsInstPubInterface will call Sub MeasError of the Call-Back object. The object of

39

class clsCallBack then raises an event and relays the error information, which is
then trapped by the form frmMeasForm for further evaluation. A unique ID, which
is the same as the Access ID described in Function GetInstPubInterface of class
clsConfigPubInterface, is passed by argument to the object for which the CallBack
object is passed. This is used by the instrument DLL to identify itself when calling
certain subroutines within the object of type clsCallBack; this is so the instantiating
object knows who made the call. It is therefore the responsibility of the
measurement DLL to keep track of which ID is associated with which instrument.

The callback object can also be used to indicate changes in an instrument setting by
calling the SettingsChanged() subroutine. For some instrument settings, it is best
not to notify the callback object every time a change is made unless indicated by the
client that doing so is desirable. To notify callback every time a setting is changed
may significantly slow down the measurement process. Instead, it may be better to
have a subroutine call or an argument in the parameter list that can turn on or off the
“settings-changed” notification process for those settings which may be called
frequently during a measurement routine. For those settings that are not likely to be
called frequently and repetitively, it is desirable to notify the callback object any
time the setting is changed. Any time the setting is changed through the virtual
panel, the “settings-changed” notification should (must) be sent through the
callback object; this allows the measurement DLL to know of any user initiated
change.

8. ClsMD5.cls: provides an algorithm for creating an MD5 Hash Code from a byte
array.

B. User Interface: provides the user interface for displaying the instrument front panel and
to examine instrument dynamic configuration.

1. Virtual-panel form: (accessible only through public interface class
clsInstPubInterface, i.e., cannot be instantiated or passed by reference outside the
DLL) used to display controls, collect traces, and display the data, giving the
appearance of the instrument front panel. Any communication with the physical
instrument will not be done until the usage is set through Property Let VPMode in
the object of type clsInstPubInterface. The virtual panel should never be placed in
vbModal state so that users can change focus from virtual panel form to other
forms.

a. Display Modes: There should be 4 different display modes for every virtual
panel. Once an instrument is assigned to the signal path (in the system
configuration form) the virtual panel is instantiated and shown and cannot be
hidden or dealoccated until it is removed from the signal path (this means that
the “X” in the right upper corner must be removed, as well as, any “close”
buttons):

(1) Full Interactive Display: this has all of the features of the virtual panel,

40

including data display, control buttons, indicators, and real-time control
of the instrument. This display can be minimized to the toolbar or put
into “Reduced Passive Display” by right clicking on display

(2) Reduced Passive Display: this has the data display but no control / query
buttons or menus. It is reduced in size with the following dimensions:

(a) Form: Width: 2000, Height 1500 (twips)

(b) Graph: Width: 1800, Height: 1000 (twips)

and docked at the edge of the main rsms4g form. This is used to observe
the instrument display without taking up as much screen real estate.
This display can be minimized to the toolbar or can be returned to the
default display mode by right clicking on display. There is minimal
information displayed, but a title bar should be present to identify the
device during Instrument-observation mode. Format for this form can be
imported from a format file that is generated by the National Instruments
software.

(3) Passive Display: this has all of the control buttons but no data display.
When controls are asserted, none of the commands or queries are sent to
instruments but the instrument virtual state is maintained. (“Virtual
state” is the state of the instrument had the commands actually been
sent.). This display is used for designating the setup when editing
scheduled events. It also can be minimized.

(4) Minimized: The virtual panel is minimized to the toolbar and will have
an indicator of measurement progress during Instrument-observation
mode (see below).

(a) When minimized, the call to clsInstPubInterface subroutines
UpdateVPTrace() and UpdateVPParam() are not executed. All
commands and queries must be executed by calling methods in the
command/query object only.

(b) When minimized, the Virtual panel will also stop sending any
commands to the instrument.

b. Usage Modes: The virtual panel will have six different use modes (all of
which may have multiple display modes) as follows:

(1) Stealth mode: In this mode all of the classes and forms are instantiated
but no forms are displayed. This is the default mode when the object of
type clsInstPubInterface is instantiated and is used primarily during the
retrieval of data for the purpose of processing without displaying.

(2) Fully-manual mode: allows the user to set up the instrument using
remote control and then acquire and save data to a data file. Defaults to
Reduced Passive Display mode with the capability to put in Full
Interactive Display mode or to minimize.

41

When the virtual panel is instantiated and placed in this mode (but only
after being placed in this mode), it will take on the settings of the device
without changing any of the parameters (except possibly when it is
necessary to emulate a function - things like persistence, auto-trigger,
normal-trigger, averaging, etc.) but no data will be displayed on a trace
until the user designates to do so.

(3) Immediate-instrument-setup mode: allows the user to manually configure
an instrument, in real time; this occurs when the specified instrument has
been designated for manual control during a interactive-automated
measurement using the Measurement form (Measurement-Methods DLL)
or when designating the signal path. For example, the user may want to
manually set a spectrum analyzer used as a down-converter and then
automate the acquisition of data from a digital oscilloscope used to
digitize the 2nd IF of the spectrum analyzer; in this case, the semi-
automated measurement controls the digital oscilloscope using the
interactive measurement form but leaves static setup of the spectrum
analyzer to the user. Defaults to Reduced Passive Display mode with the
capability to put in Full Interactive Display mode or to minimize.

When the virtual panel is instantiated and placed in this mode (but only
after being placed in this mode), it will take on the settings of the device
without changing any of the parameters (except possibly when it is
necessary to emulate a function - things like persistence, auto-trigger,
normal-trigger, averaging, etc.) but no data will be displayed on a trace
until the user designates to do so.

(4) Recorded-instrument-settings mode: allows the user to manually
configure an instrument and save the instrument state (or virtual state) be
used later for semi-automated event-scheduled measurements; this is
used when the specified instrument has been designated for static control
during a scheduled measurement. For example, when setting up an
elaborated event using the schedule editor, the user may want to
manually set a spectrum analyzer used as a down-converter, whereby the
2nd IF is fed to a digital oscilloscope for digitization. During the editing
of the schedule event, the user goes to the spectrum-analyzer virtual-
panel, sets up the device as desired, and places the variables describing
the instrument state in an elaborated event to be used during scheduled
execution. During execution, the variables describing the instrument
state are sent to the spectrum analyzer for a static setup and then the
measurement module automates the acquisition of data from a digital
oscilloscope.

When the user is setting up an event in the event editor, each of the
virtual panels in the signal path will be accessible and the user will set
up each instrument and the measurement as desired. Then when the user

42

saves the event to file, the editor queries the settings of each of the
instrument DLLs, as well as, the measurement DLL.

The recorded-instrument-setup mode can further be divided into two
sub-modes as follows:

(a) Active: in this sub-mode, the manual commands are physically sent
to the instrument to make hardware changes as the user changes the
various parameters on the virtual panel; therefore a physical
connection via the control bus is required. Defaults to Reduced
Passive Display mode with the capability to put in Full Interactive
Display mode or to minimize.

When the virtual panel is instantiated and placed in this mode (but
only after being placed in this mode), it will take on the settings of
the device without changing any of the parameters (except possibly
when it is necessary to emulate a function - things like persistence,
auto-trigger, normal-trigger, averaging, etc.) but no data will be
displayed on a trace until the user designates to do so.

(b) Passive: in this sub-mode, the manual variables describing the
instrument virtual state are simply recorded without sending the
commands to the instrument; the control bus, therefore, does not
have to be physically connected. Defaults to Passive Display with
the capability to minimize.

(5) Instrument-observation mode: allows the user to observe the display data
trace during automated or semi-automated measurements. In this case,
the control commands are sent to the command/query object, and
“Update Data Trace” sent to the virtual panel. Defaults to Reduced
Passive Display with the option to minimize or place in Full Interactive
Display with controls, buttons, and menus disabled. When minimized
the virtual panel no longer sends any command to the command/query
object (i.e. ignores any calls to clsInstPubInterface subroutines
UpdateVPTrace() and UpdateVPParam()) .

When the virtual panel is instantiated and placed in this mode (but only
after being placed in this mode), it will take on the settings of the device
without changing any of the parameters (except possibly when it is
necessary to emulate a function - things like persistence, auto-trigger,
normal-trigger, averaging, etc.) but no data will be displayed on a trace
until the measurement calls Sub UpdateVPTrace() in the object of type
clsInstPubInterface.

(6) Data-preview mode: allows the user to examine previously acquired data
from a fully-manual measurement. Defaults to Full Interactive Display
with specified controls, buttons, and menus disabled. Can be put in
Reduced Passive Display mode or minimized.

43

(7) Setup-preview mode: allows the user to examine the instrument setup
from data previously acquired using either a scheduled or interactive-
automated measurement. In this mode, the virtual panel is hidden and
only the form of type frmDynamicConfiguration (minimized to the
toolbar) is available to the user.

c. Menu Options: Standard top level menu items should be: “File”, “Edit”,
“Setup”, “Show Settings”, “Tools” - in that order. The “File” menu will be
organized as shown in the following diagram:

Besides the instrument control buttons and data-display, the virtual panel will
have the following standard capabilities implemented as menu items (at the
programmer discretion, buttons with the same functionality may also bed
included):

44

Figure 7

(1) Print (contained in the File menu): Enabled only for the fully-manual
mode, and the Data-preview mode, this option allows the user to print a
report quality graph of the data as illustrated in the figure below. On the
“File” menu (as illustrated above), there will be a “Print” caption. If the
data is passed by the call to Property Get DataStream in the object of
type clsInstPubInterface, this button will be disabled.

(2) Save-data (contained in the File menu): Enabled only for fully-manual
mode, this option is used to save the data, as shown on the display, to the
current binary data file. This option is implemented by calling the
Subroutine SaveTrace in the object of type clsCallBack (see UML
sequence diagram - Figure 2.1). The call-back object then raises the

45

event GetDataDump which is trapped in form frmFullManualExec. This,
in turn, results in a call to Property Get DataDump() of the
clsInstPubInterface object for the purpose of obtaining the trace data
from an instrument DLL. An ID argument passed in subroutine
Property Set CallBackObj, which is the same as the Access ID described
in Function GetInstPubInterface of class clsConfigPubInterface, is
passed back as an argument in subroutine SaveTrace and is used to
identify the particular instrument making the request. On the “File”
menu (as illustrated above), there will be a “Save” caption.

(3) Save data record to ASCII file (located in the file menu): Enabled only
in the data-preview mode, this option writes the data to a ASCII
formatted text file along with the appropriate labels. This is
accomplished by calling the Subroutine Save2ASCII() in the object of
type clsCallBack (see UML sequence diagram - Figure 2.0). In turn, the
call-back object raises the event Dump2ASCII(), which is trapped in
either the form of type frmIntAutExec, or frmFullManualExec. In turn,
the executor has each pertinent object write, to an ASCII file, the data
for which it is responsible for packaging. On the “File” menu (as
illustrated above), there will be an “Export” caption. If the data is
passed by the call to Property Get DataStream in the object of type
clsInstPubInterface, this button will be disabled.

(4) Save/Recall Configuration (located in the file menu): these options
provides the user the option of saving the current instrument state to a
file or to recall the state from file to configure the instrument. These
option will be enabled only for the Fully-manual mode, the Immediate-
instrument-setup mode, and the Recorded-instrument-settings mode. On
the “File” menu (as illustrated above), there will be an “Open Config”
caption and a “Save Config” caption. The “Open Config” should be
disabled for the Passive Recorded-instrument-settings mode.

(1) Local/Remote (contained in the Setup menu): Enabled only for fully-
manual mode and immediate-instrument-setup mode, this option allows
the user to put the instrument in local mode so that settings can be
changed on the actual instrument panel.

(a) When possible, the instrument should be put the instrument in
“lockout” at all times except when placed in local mode.

(b) There should be some indicator on the Virtual Panel to show that
the device is in “local.”

(c) When the user puts the device back into remote mode (by either
asserting the local/remote option in the menu or by trying to
change one of the instrument settings from the virtual panel), the
virtual panel does an automatic update of the instrument
parameters.

46

(d) On the “Setup” menu, there will be (with a check Ucapability) a
“Local Lockout” caption on the pull down menu (i.e. when
checked, it is in local lockout mode- the default state; when not
checked, it is in local)

(2) Preset (contained in the Setup menu): Enabled only for fully-manual
mode, immediate-instrument-setup mode, and recorded-instrument-setup
mode, this option allows the user to return the instrument to a preset
state. On the “Setup” menu, there will be a “Preset” caption.

(3) Signal-path: (contained in the Edit menu) Enabled only in the fully-
manual mode, the immediate-instrument-setup mode or the data-preview
mode, this feature is used to display the form of type frmSystemConfig
so that the user can examine the current system configuration and signal
path. In the in the fully-manual mode and immediate-instrument-setup
modes this request to see the signal path also allows the user to make
changes if necessary and to designate individually whether each
instrument (including preselector) is to be manually set (static mode) or
fully automated (dynamic mode). (See UML sequence diagram - Figure
1.6) When in data-preview mode, the System-Configuration-Form is
also set in the same mode, and therefore, the system configuration and
signal path cannot be changed. The request to see the signal path is
accomplished as described in Property Let VPMode of
clsInstPubInterface. On the “Edit”menu, there will be a “Signal Path”
caption.

(4) Re-measure (contained in the Tools menu): Enabled only in the data-
preview mode, this option informs the form of frmNonSchedExecutor
which then sets up the measurement system to do measurement using the
same parameters contained in the file being examined (provided the
system hardware configuration is the same - i.e., the MD5 Hash Codes
of the hardware configuration is the same as that stored in the signal-
flow-path section of the data record). This is accomplished by calling
Subroutine ReMeasure() in the object of type clsCallBack. The call-back
object then raises the event DoReMeas() which is trapped in the form of
type frmNonSchedExecutor. The executor then calls all the appropriate
objects to re-measure with the same settings contained in the data record.
 On the “Tools“ menu, there will be a “Remeasure” caption.

(5) Close (including “X” button in right upper corner of the window):
this option will be disabled in all of the usage modes. The forms will be
closed only as the object of clsInstPubInterface is set to “Nothing” by
other objects

Because there may be loops that tie up the focus for long periods of time, the
Visual Basic function DoEvents will be placed in these loops to allow
branching to events as they occur.

47

2. Dynamic Configuration form: (accessible only through public interface class
clsInstPubInterface, i.e., cannot be instantiated outside the DLL) provides a display
of dynamic parameter settings. This will be used to display the current settings and
to display instrument settings when examining data from a data file . The user is not
allowed to make any changes from this form.

B. Public Interface:

1. Public Interface Class: provides public access to forms, classes, and their
associated methods and members. Upon instantiation and when the mode has been
set by calling the Property Let VPMode, the virtual panel will be instantiated and
shown, except for Stealth mode and Setup-preview mode, in which case, it is
hidden; the public interface object will also immediately instantiate the Dynamic
Configuration form (for all usage modes), and the Command/Query object (only for
Fully-manual mode, Immediate-instrument-setup mode, Active recorded-
instrument-settings mode, and Instrument-observation mode); upon termination, the
Public Interface object also sets to “Nothing” any instantiated Virtual Panel form,
Dynamic Configuration form, and/or Command/Query object. Data can be sent to
file and errors can be sent back to the forms of frmNonSchedExecutor by calling the
appropriate subroutine in the object of class clsCallBack. When a request for data-
save is made via the object of clsCallBack, the Property Get DataDump() is, in turn,
called to obtain the data.

The public interface class should implement all of the subroutines, functions,
and properties contained in the class of IgenInstrument. This is inforced by placing
the statement “Implements IgenInstrument” at the top of the code contained within
the Public Interface class. The following is an example of a subroutine located in
the class of IgenInstrument that must be implemented in the Public Interface class:

Public Sub SetCallBackObj(ByRef vCallBackObj As clsCallBack, ByVal vID As Integer)

‘There is no code contained within this subroutine

End Sub

The subroutine is implemented in the Public Interface class through the
following code:

Private Sub IGenInstrument_SetCallBackObj(vCallBackObj As RSMS4Gtypelib.clsCallBack,
ByVal vID As Integer)

‘Code contained within this subroutine implements the subroutine

End Sub

Note that, when implemented, the subroutine is declared Private. (This is very

48

important.) The subroutine name is also proceeded by “IGenInstrument_” which
designates the interface class that is being implemented.

The instrument public interface class will have a standard name called
clsInstPubInterface (instancing = “multiuse”) and will have the following public
methods:

a. Public Sub SetCallBackObj(ByRef vCallBackObj As clsCallBack, ByVal
vID As Integer): passes by reference an object of class clsCallBack. This
object can be used to relay to the instantiating object such things as errors,
trace save, request to see the signal path, and command-set save. The
argument vID, which is the same as the Access ID described in Function
GetInstPubInterface of class clsConfigPubInterface, is a unique ID given to
the object for which the CallBack object is passed. This is used by the
instrument DLL to identify itself when calling certain subroutines within the
object of type clsCallBack so that the instantiating object knows who made the
call. This object is vital to the operation of the instrument DLL and must be
passed to it prior to use.

b. Public Property Set Docker(ByRef DockerObj As clsDocker): passes by
reference an object of class clsDocker, which is used to give instructions,
when queried, as to where to dock the virtual panel when placed in Reduced
Passive Display mode. This object is vital to the operation of the instrument
DLL and must be passed to it by the system configuration package prior to
use.

c. Public Sub ShowVP(): This subroutine shows the virtual panel when called
but is ignored in the “stealth” usage mode.

d. Public Property Let InstSessionID(ByVal IDVal as Long): passes the VISA
instrument session ID. This must be done prior to using any virtual panel or
sending messages to the command/query object and is accomplished by the
System Configuration package.

e. Public Sub ShutDown(): This notifies the instrument DLL that the instrument
interface is about to be deallocated. This gives the instrument a chance to do
any cleanup work before deallocation. For example, an instrument that is in
“local lockout” may need to be placed in “local” mode so that the user does
not have to re-cycle the power on the device once software control is
discontinued.

f. Public Property Let StaticVSDyn(ByVal StateArg as Integer): designates
whether the instrument is to be dynamic or static during an automated
measurement - designated by the argument StateArg, where 0 = dynamic and 1
= static.. If designated as “static”, the instrument stays in the setup state
determined by the user, where the setup state is set either during schedule
editing or prior to an interactive-automated measurement. If designated as

49

“dynamic”, a measurement DLL is given the permission to alter the setup state
of the instrument during execution of the measurement routine. There is no
way to prevent the measurement routine from changing the setup state of the
instrument even if it is designated as “static”, and therefore, this option can be
overridden if necessary. However, the measurement routine should query for
this setting using the Property Get StaticVsDyn(), so that a decision can be
made as to whether to grant the user the right to have static control of the
instrument. Whether the instrument is to be designated as “static” or
“dynamic” is determined at the time the user designates the signal path in the
system configuration form. The user is automatically given this choice at the
time the instrument is designated as being in the signal path.

g. Public Property Get StaticVSDyn() As Integer: indicates whether the
instrument is currently in a dynamic or static mode. where the returned value
is 0 for “dynamic” and 1 for “static”. If designated as “static”, the instrument,
during automated measurements, stays in the setup state determined by the
user, where the state is set either during schedule editing or prior to an
interactive-automated measurement. If designated as “dynamic”, a
measurement DLL is given the permission to alter the state of the instrument
during execution of the measurement routine. There is no way to prevent the
measurement routine from changing the state of the instrument even if it is
designated as “static”, and therefore, this option can be overridden if
necessary. However, the measurement routine should query for this setting
using the Property Get StaticVsDyn(), so that a decision can be made as to
whether to grant the user the right to have static control of the instrument.
Whether the instrument is to be designated as “static” or “dynamic” is
determined at the time the user designates the signal path in the system
configuration form. The user is automatically given this choice at the time the
instrument is designated as being in the signal path.

h. Public Property Get DynParam() As Byte(): returns information about the
instrument dynamic configuration - packaged as a a byte array. If the
instrument is in Passive Recorded-instrument-settings mode, then the
parameters returned are simply those which describe the “virtual state” of the
instrument. (“Virtual state” is the state of the instrument had the commands
actually been sent.) The parameters will be packaged by the Dynamic
Parameters form, which updates the information about the current instrument
state before returning the information. The following five header entries will
be located at the beginning of the byte array:

(1) A preamble containing the following characters:
“RSMS4G_InstDynConfigPreamble”. The preamble is preceded by a
carriage return (hex 0d), a linefeed (hex 0a), another carriage return
(hex 0d) , and another linefeed (hex 0a) to mark the beginning. In
addition, the preamble is followed by a null character (hex 0) to mark the

50

end.

(2) A version number to designate the packaging version. There may be
more than one way in which the information is packaged into a byte
array. Each method is associated with a version. The version number is
represented by numeric characters followed by a null character (hex 0) to
mark the end of the string.

(3) The name of the Instrument ActiveX file responsible for packaging the
information, followed by a null character (hex 0) to mark the end of the
file name. (e.g., HP8566.DLL)

(4) The type of insturment/component, followed by a null character (hex 0)
to mark the end of the name (e.g., Fixed Filter). The name should be
identical to the string returned by Function InstInfo in class
clsInstPubInterface.

(5) An indicator which designates whether the instrument is in “dynamic” or
“static” mode. The static-vs-dynamic indicator should be a numeric
characters followed by a null character (hex 0) to mark the end of the
string. 0 = “static”, and 1 = “dynamic”.

(6) The number of bytes in the byte array - including these initial six header
entries. The number of bytes is represented by numeric characters
followed by a null character (hex 0) to mark the end of the string. A
variable length entry could result in a recursive situation, whereby the
actual byte length is changed as this entry is added to the header.
Therefore, this entry should consist of a fixed number of numeric
characters, the length of which exceeds the number of digits required to
represent the maximum possible size of the byte array that could be
passed back during the call to this property. Significant figures should
be proceeded by zeros. (e.g., 0000532).

i. Public Sub InstDynConfigPackaging(ByRef PathAndFile As String): opens
and appends to an ASCII file, designated by PathAndFile (full path and file
name), the dynamic component-/instrument-configuration packaging for each
instrument/component type. The format of the output must be as follows,
where quotes designate a required title, strings inclosed in <> designate the
value, and words in italics simply give an explanation and are not part of the
output:

I) “INSTRUMENT- / COMPONENT-DYNAMIC-CONFIGURATION
PACKAGING” this is a title for the section.

A) “FOR:” this is a subtitle - indented X 1

1) “ Instrument / Component Type: ” <string> where the sting
represents a description of the instrument / component type -
indented X 2.

51

2) “Dynamic Configuration Packaging Version: ” <value> where
value represents the version number of the configuration
packaging - integers only - indented X 2.

3) “ Date version originated: ” <MM-DD-YY> where MM=
month, DD=day, YY=year, and must be represented by two digits
for each value. (e.g., Date version originated 01-15-03) - indented
X 2.

B) “FORMAT:” this is a subtitle - indented X 1.

1) “INSTRUMENT- / COMPONENT-DYNAMIC-
CONFIGURATION HEADER:” this is a subtitle - indented X 2

“ Header var #1 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Header var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Header var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the header variable,
description is a string describing what the variable
represents, and units is a string describing the units.

2) “INSTRUMENT- / COMPONENT-DYNAMIC-
CONFIGURATION PARAMETERS:” this is a subtitle - indented
X 2

“Parameter #1: ” <description>; <type>; <# of
bytes>;(<units>) - indented X 3

“Parameter #2: ” <description>; <type>; <# of
bytes>;(<units>) - indented X 3

“Parameter #3: ” <description>; <type>; <# of
bytes>;(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the footer variable,
description is a string describing what the variable
represents, and units is a string describing the units.

3) “INSTRUMENT- / COMPONENT-DYNAMIC-
CONFIGURATION FOOTER:” this is a subtitle - indented X 2

“ Footer var #1 ” <description>; <type>; <# of bytes>;

52

(<units>) - indented X 3

“ Footer var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Footer var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the footer variable,
description is a string describing what the variable
represents, and units is a string describing the units.

EXAMPLE:

INSTRUMENT- / COMPONENT-DYNAMIC-CONFIGURATION PACKAGING

FOR:

Instrument / Component Type: Spectrum Analyzer

Dynamic Configuration Packaging Version: 1

Date version originated: 04-15-03

FORMAT:

INSTRUMENT- / COMPONENT-DYNAMIC-CONFIGURATION HEADER:

Header Var #1: Preamble; character bytes
“RSMS4G_InstDynConfigPreamble”;byte array preceded by a carriage return
(hex 0d), a linefeed (hex 0a), another carriage return (hex 0d), and another linefeed
(hex 0a) and terminated with a null character (hex 00); variable; (none)

Header Var #2: version number; numerical characters terminated with a null
character; variable; (none)

Header Var #3: Instrument ActiveX file responsible for packaging the information;
characters terminated with a null character; variable; (none)

Header Var #4: type of component/instrument; characters terminated with a null
character; variable; (none)

Header Var #5: number of data bytes - including header, parameters, and footer;
numerical characters terminated with a null character; variable; (none)

INSTRUMENT- / COMPONENT-DYNAMIC-CONFIGURATION PARAMETERS:

Parameter #1: Sweep time / Dwell time; integer; 2 bytes; (seconds)

Parameter #2: Center frequency; double; 8 bytes; (MHz)

Parameter #3: Frequency span; double; 8 bytes; (MHz)

Parameter #4: Resolution bandwidth; double; 8 bytes; (MHz)

53

Parameter #5: Video bandwidth; double; 8 bytes; (MHz)

INSTRUMENT- / COMPONENT-DYNAMIC-CONFIGURATION FOOTER:

None

j. Public Property Let DynParam(ByRef Val() as Byte): receives a byte array
containing the information about the instrument dynamic configuration, un-
packages the array into meaningful information, and then shows the dynamic
parameters via the form Dynamic Configuration form. The instrument,
whether virtual or real, should also be set up according to the header
information that designates “dynamic” vs “static” mode. Since a “version” or
“type” marker follows the AcitveX file name, interpretation is backward
compatible with older packaging versions. Property Let DynParam must be
called prior to any call to Property Let DataDump.

k. Public Sub ParseDynParam(ByRef Val() as Byte): receives a byte array
containing the information about the instrument dynamic configuration, un-
packages the array into meaningful information, but does NOT shows the
dynamic parameters via the form Dynamic Configuration form. Since a
“version” or “type” marker follows the AcitveX file name, interpretation is
backward compatible with older packaging versions.

l. Public Property Let ConfigByParam(ByRef Val() as Byte): receives a byte
array containing the information about the instrument dynamic configuration,
un-packages the array into meaningful information, and then sets up the
physical instrument, as well as the virtual panel, and the dynamic
configuration form consistent with the dynamic configuration parameters.
How the virtual panel is displayed depends upon the current usage mode.
Since a “version” or “type” marker follows the AcitveX file name,
interpretation is backward compatible with older packaging versions.

m. Public Sub DynParam2ASCII(ByRef ParamVal() as Byte,ByRef
PathAndFile As String): receives, through argument ParamVal, a byte array
containing instrument configuration information (originally obtained through
Property Get DynParams from the object of type clsInstPubInterface), un-
packages the array into meaningful information (based upon the version
number), opens, for appending, the file designated by the argument
FileAndPath, writes the measurement data along with appropriate labels to an
ASCII file, and then closes the file.

n. Public Sub Trace2ASCII(ByRef DataBytes() As Byte,ByRef PathAndFile As
String): receives, through argument DataBytes, a byte array containing a trace
data (originally obtained through Property Get DataDump from the object of
type clsInstPubInterface), un-packages the byte array to create meaningful
information (based upon the version number), opens, for appending, the file
designated by the argument FileAndPath, writes the measurement data along
with appropriate labels to an ASCII file, and then closes the file. This

54

subroutine will not be called if the data was originally obtained by calling
Property Get DataStream.

o. Function InstErrs(ByRef ErrStr() As String) As integer: this function
requests that a query be made to the instrument in order to determine if there
are any instrument errors. It returns, by reference, an array of strings
containing any and all instrument errors messages as a result of the query. The
function returns an integer indicating the number of errors (0 = no errors).

p. Public Property Get ICmmdQueryObj() As Object: returns, by reference, the
instantiated GENERAL INTERFACE to the command/query class.

q. Public Property Get CmmdQueryObj() As Object: returns, by reference, the
instantiated command/query class as an object.

r. Public Sub UpdateVPTrace(): Notifies the Virtual Panel to perform a single
update to the virtual panel trace with the most recent instrument trace data.
Not all instruments will implement this subroutine, as some do not have a
trace (e.g. preselectors). This is ignored if the virtual panel is minimized.

s. Public Sub UpdateVPParam(): Notifies the Virtual Panel to update the panels
settings consistent with the physical instrument (only those parameters
currently being displayed by the virtual panel). NOTE: This does NOT result
in update of the parameters within the Dynamic Configuration form. This is
ignored if the virtual panel is minimized.

t. Public Function InstInfo() As String: returns a string containing the name of
the instrument model, and instrument type, separated by a comma. Example:
E4440,Spec Analyzer

u. Public Property Let VPMode(ByRef MinimizeVal As Integer, ByVal vMode
as Integer): sets the usage mode (described above), where the argument
MinimizeVal designates whether to minimize the virtual panel (0 = Default
display mode, 1 = minimized to the toolbar), and the argument vMode
designates one of the following, where the value passed may be designated as
a enumerated type VPUsageMode contained in Common.base:

(1) 0 = Fully manual mode (the coder can use “FULL_MANUAL” of the
enumerated type VPUsageMode): The Virtual Panel is displayed (if not
already displayed), and the user designates the settings and physically
changes the instrument settings in real time by sending commands to the
device.

(a) Local /Remote - enabled

(b) Preset - enabled

(c) Save-data - enabled: when depressed, this button calls the
subroutine SaveTrace() in the object of clsCallBack, which is then
used to raise an event by the form of frmNonSchedExecutor. This,

55

in turn, results in a call to Property Get DataDump() of the
clsInstPubInterface object for the purpose of obtaining the trace
data from the instrument DLL.

(d) Signal-path - enabled: when asserted, this option calls the
subroutine SeeSignalPath() in the object of clsCallBack, which is
then used to raise an event trapped by the form of
frmNonSchedExecutor. This, in turn, calls subroutine
SetHrdwrCnfgAndPath() in the object of type
clsConfigPubInterface to show and set the focus of the form of
type frmSystemConfig. If a change is made to the signal path, the
object of clsConfigPubInterface raises the event
SigPathChanged() which is then trapped by either form of type
frmIntAutExec, or frmFullManualExec, . The executor then
notifies, via subroutine PathHasChngd(), any extraneous-
measurement DLL, and/or antenna-position-control DLL that the
path has changed. Should this occur, each of the DLLs
immediately relinquish all instrument Access IDs, each reference
to an object of type clsInstPubInterface is set to “Nothing”, and
then access rights are re-established for all necessary instruments
for which control is required.

(e) Save-to-ASCII - disabled

(f) Re-measure - disabled

(g) Save/Recall Configuration - enabled

(h) Print - enabled

(i) Other instrument control - enabled

(j) Display - enabled

(2) 1 = Immediate-instrument-setup mode (the coder can use
“IMM_INST_SETUP” of the enumerated type VPUsageMode): The
Virtual Panel is displayed (if not already displayed), and the user
designates the settings and physically changes the instrument settings in
real time by sending commands to the device.

(a) Local /Remote - enabled

(b) Preset - enabled

(c) Save-data - disabled

(d) Signal-path - enabled: when asserted, this option calls subroutine
SeeSignalPath() in the object of type clsCallBack. This in turn
raises and event in the measurement object of type
clsMeasPubInterface (during an interactive-automated
measurement), which then calls subroutine

56

SetHrdwrCnfgAndPath() in the object of type
clsConfigPubInterface to show and set the focus of the form of
type frmSystemConfig. If a change is made to the signal path, the
object of clsConfigPubInterface raises the event
SigPathChanged() which is then trapped by either form of type
frmIntAutExec, or frmFullManualExec. The executor then notifies,
via subroutine PathHasChngd(), any active measurement DLL,
extraneous-measurement DLL, and/or antenna-position-control
DLL that the path has changed. Should this occur, each of the
DLLs immediately relinquish all instrument Access IDs, each
reference to an object of type clsInstPubInterface is set to
“Nothing”, and then access rights are re-established for all
necessary instruments for which control is required. If the signal-
path option is asserted in the virtual panel simply during setup of
the system configuration and signal path (no interactive-automated
measurement), a call is still made to the subroutine
SeeSignalPath() in the object of type clsCallBack, but since there is
no object to trap the raised event, nothing happens.

(e) Save-to-ASCII - disabled

(f) Re-measure - disabled

(g) Save/Recall Configuration - enabled

(h) Print - disabled

(i) Other instrument control - enabled

(j) Display - enabled

(3) 2 = Recorded-instrument-setup mode – active (the coder can use
“REC_INST_SETUP_ACTIVE” of the enumerated type
VPUsageMode): The Virtual Panel is displayed (if not already
displayed), and the user designates the settings and physically changes
the instrument settings in real time by sending commands to the device.
As the commands are executed, the dynamic configuration of the
instrument changes. When Property Get DynParam is called, the
dynamic configuration of the instrument can be packaged and returned in
a byte array.

(a) Local /Remote - enabled

(b) Preset - enabled

(c) Save-data - disabled

(d) Signal-path - disabled:

(e) Save-to-ASCII - disabled

(f) Re-measure - disabled

57

(g) Save/Recall Configuration - enabled

(h) Print - disabled

(i) Other instrument control - enabled

(j) Display - enabled

(4) 3 = Recorded-instrument-setup mode – passive (the coder can use
“REC_INST_SETUP_PASSIVE” of the enumerated type
VPUsageMode): The Virtual Panel is displayed in Passive Display mode
(if not already displayed), and the user can record a series of instrument
commands without any physical connection to the instrument. As the
commands are issued, the virtual state of the instrument is determined
and stored so that when Property Get DynParam is called, the virtual
dynamic configuration of the instrument can be packaged and returned in
a byte array. When in this mode, the command/query module will not be
used since no physical connection is established.

(a) Local / Remote - disabled

(b) Preset - enabled but does not send commands to instrument

(c) Save-data - disabled

(d) Signal-path - disabled:

(e) Save-to-ASCII - disabled

(f) Re-measure - disabled

(g) Save/Recall Configuration - enabled

(h) Print - disabled

(i) Other instrument control - enabled but does not send commands
to instrument

(j) Display - disabled

(5) 4 = Instrument-observation mode (the coder can use
“INST_OBSERVATION” of the enumerated type VPUsageMode): The
Virtual Panel is displayed (if not already displayed) so that the display
can be observed during automated control of the instrument.

(a) Local / Remote - disabled

(b) Preset - disabled

(c) Save-data - disabled

(d) Signal-path - disabled:

(e) Save-to-ASCII - disabled

(f) Re-measure - disabled

(g) Save/Recall Configuration - disabled

58

(h) Print - disabled

(i) Other instrument control - disabled

(j) Display - enabled

(6) 5 = Data-preview mode (the coder can use “DATA_PREVIEW” of the
enumerated type VPUsageMode): The Virtual Panel is displayed (if not
already displayed) so that the display can be used to examine recorded
data acquired from a fully-manual measuremen. When in this mode, the
command/query module will not be used since no physical connection is
established.

(a) Local / Remote - disabled

(b) Preset - disabled

(c) Save-data - disabled

(d) Signal-path -enabled: when asserted, this option calls the
subroutine SeeSignalPath() in the object of clsCallBack, which is
then used to raise an event trapped by the form of type
frmNonSchedExecutor (for data acquired during a fully-manual
measurement). This, in turn, calls subroutine
SetHrdwrCnfgAndPath() in the object of type
clsConfigPubInterface to show and set the focus of the form of
type frmSystemConfig. When in data-preview mode, the System-
Configuration-Form is also set in the same mode, and therefore, the
system configuration and signal path cannot be changed.

(e) Save-to-ASCII - enabled

(f) Re-measure - enabled

(g) Save/Recall Configuration - disabled

(h) Print - enabled

(i) Other instrument control - disabled

(j) Display - enabled

(7) 6 = Setup-preview mode (the coder can use “SETUP_PREVIEW” of the
enumerated type VPUsageMode): In this mode, the virtual panel is
hidden and only the form of type frmDynamicConfiguration is available
to the user, where the default is to minimize this form. When in this
mode, the command/query module will not be used since no physical
connection is established.

(8) 6 = stealth mode (the coder can use “STEALTH” of the enumerated
type VPUsageMode): In this mode, forms are instantiated but none are
shown. This mode is primarily used for the purpose of parsing the data
from the data record and making it available for processing without any

59

display of the data. The argument MinimizeVal is ignored. When in
this mode, the command/query module will not be used since no
physical connection is established.

v. Public Property Get VPMode(ByRef MinimizeVal As Integer) As integer:
Returns the usage mode designated one of the following:

(1) 1 = Fully manual mode:

(2) 2 = Immediate-instrument-setup mode:

(3) 3 = Recorded-instrument-setup mode – active:

(4) 4 = Recorded-instrument-setup mode – passive:

(5) 5 = Instrument-observation mode :

(6) 6 = Data-preview mode:

(7) 7 = Setup-preview mode:

(8) 8 = Stealth mode:

The argument MinimizeVal is passed back by reference and designates
whether the virtual panel is minimized (0 = Default display mode, 1 =
minimized to the toolbar)..

w. Public Property Let VPVisibility(ByVal VisVal as Integer): sets the visibility
of the virtual panel, where 0 = hide (remains instantiated), 1 = visible. In
stealth mode, the virtual panel remains hidden.

x. Public Property Get VPVisibility() as Integer: returns an integer designating
whether the virtual panel is currently visible or not. 0 = not visible, 1 =
visible.

y. Public Property Get DynCnfgMD5() As Byte(): returns the 16 byte array
containing the MD5 Hash Code for the current instrument dynamic
configuration - generated from the byte array (excluding header information),
same at that returned by Property Get DynParam of clsInstPubInterface.

z. Public Property Let DataDump(ByRef DataBytes() As Byte): receives a byte
array containing data and passes the DataBytes argument as a byte array
(created by Property Get DataDump), un-packages the byte array to create
meaningful information (based on the version number) and displays the data
on the Virtual Panel Form when in Data-preview mode. Property Let
DynParam must be called prior to Property Let DataDump and the virtual
panel should show settings consistent with the values passed Property Let
DynParam. This property can be called by the executor only if by calling Get
PkgType in the object of type clsInstPubInterface the returned value is “0" or
if the record header information indicates that the data is packaged as a byte
array (as apposed to being streamed into a temporary holding file).

aa. Public Sub ParseDataDump(ByRef DataBytes() As Byte): receives a byte

60

array containing data and passes the DataBytes argument as a byte array
(created by Property Get DataDump), un-packages the byte array to create
meaningful information (based on the version number) but does NOT display
the data on the Virtual Panel Form when in Data-preview mode. This is used
primarily for parsing a record from a data file for the purpose of processing
without displaying the data. This property can be called by the executor only if
by calling Get PkgType in the object of type clsInstPubInterface the returned
value is “0" or if the record header information indicates that the data is
packaged as a byte array (as apposed to being streamed into a temporary
holding file).

bb. Public Property Get PkgType () As Integer: returns an integer which indicates
the method by which data is to be passed. When PkgType = 0, the data is
packaged as byte array and the executor should call Property Get DataDump
in the object of type clsInstPubInterface to retrieve the packaged data and, in
turn, call Sub WriteDataRecord to pass the data on to the File I/O Manager.
When PkgType = 1, the data, including header, is contained in a temporary
holding file in which large quantities of data were streamed. In this latter case,
the executor should retrieve the file name by calling Property Get DataStream
in the object of type clsInstPubInterface and then pass it on to the File I/O
Manager by calling Sub WriteDataStream.

cc. Public Property Get DataDump() As Byte(): This property should be called
by the executor only after calling Property Get PkgType in the object of type
clsInstPubInterface and receiving a return value of “0". The implementation
of this property is mutually exclusive to Property Get MeasStream. In other
words, only one of the two properties “Get DataStream” and “Get
DataDump” is implemented in agreement with Property Get PkgType. The
other shows an error if called. The property returns, from a virtual panel, data
packaged as a byte array with the following four header entries located at the
beginning of the array:

(1) A preamble containing the following characters:
“RSMS4G_DataPreamble”. The preamble is preceded by a carriage
return (hex 0d), a linefeed (hex 0a), another carriage return (hex 0d) ,
and another linefeed (hex 0a) to mark the beginning. In addition, the
preamble is followed by a null character (hex 0) to mark the end.

(2) A version number to designate the version of the data packaging. There
may be more than one way in which the data are packaged into a byte
array. Each method is associated with a version. The version number is
represented by numeric characters followed by a null character (hex 0) to
mark the end of the string.

(3) The name of the Instrument ActiveX file responsible for packaging the
information, followed by a null character (hex 0) to mark the end of the
file name. (e.g., HP8566.DLL)

61

(4) The number of bytes in the data package (including these four header
entries). The number of bytes is represented by numeric characters
followed by a null character (hex 0) to mark the end of the string. A
variable length entry could result in a recursive situation, whereby the
actual byte length is changed as this entry is added to the header.
Therefore, this entry should consist of a fixed number of numeric
characters, the length of which exceeds the number of digits required to
represent the maximum possible size of the byte array that could be
passed back during the call to this property. Significant figures should
be proceeded by zeros. (e.g., 0000532).

At the end of the Data (data footer) is a 32 Bit CRC Code for the data only (to
identify data corruption). Code for the CRC32 algorithm is located in
Common.bas. The code takes an array of bytes as input and computes a 32-bit
"checksum". To use the algorithm, call InitialiseCRC32tab and then call
GetCRC32ForByteArray(Bytes).

dd. Public Property Get DataStream() As Byte(): This property should be called
by the executor only after calling Property Get PkgType in the object of type
clsMeasPubInterface and receiving a return value of “1". The implementation
of this property is mutually exclusive to Property Get DataDump. In other
words, only one of the two properties “Get DataStream” and “Get
DataDump” is implemented in agreement with Property Get PkgType. The
other shows an error if called. This property returns, from a virtual panel, a
temporary holding file containing the data dump proceeded by the following
four header entries located at the beginning of the file:

(1) A preamble containing the following characters:
“RSMS4G_DataPreamble”. The preamble is preceded by a carriage
return (hex 0d), a linefeed (hex 0a), another carriage return (hex 0d) ,
and another linefeed (hex 0a) to mark the beginning. In addition, the
preamble is followed by a null character (hex 0) to mark the end.

(2) A version number to designate the version of the data packaging. There
may be more than one way in which the data are packaged into a byte
array. Each method is associated with a version. The version number is
represented by numeric characters followed by a null character (hex 0) to
mark the end of the string.

(3) The name of the Instrument ActiveX file responsible for packaging the
information, followed by a null character (hex 0) to mark the end of the
file name. (e.g., HP8566.DLL)

(4) The number of bytes in the data package (including these four header
entries). The number of bytes is represented by numeric characters
followed by a null character (hex 0) to mark the end of the string. A

62

variable length entry could result in a recursive situation, whereby the
actual byte length is changed as this entry is added to the header.
Therefore, this entry should consist of a fixed number of numeric
characters, the length of which exceeds the number of digits required to
represent the maximum possible size of the byte array that could be
passed back during the call to this property. Significant figures should
be proceeded by zeros. (e.g., 0000532).

At the end of the Data (data footer) is a 32 Bit CRC Code for the data only (to
identify data corruption). Code for the CRC32 algorithm is located in
Common.bas. The code takes an array of bytes as input and computes a 32-bit
"checksum". To use the algorithm, call InitialiseCRC32tab and then call
GetCRC32ForByteArray(Bytes).

ee. Public Sub InstDataDumpPackaging(ByRef PathAndFile As String) opens
and appends to an ASCII file, designated by PathAndFile (full path and file
name), the data packaging for each version of the particular instrument data-
dump (whether the data is passed as a byte array or streamed into a temporary
holding file). This refers to data that has been gathered by a virtual panel
during a fully manual measurement, whereby the user chooses to save the
trace(s) to a data file. The format of the output must be as follows, where
quotes designate a required title, strings inclosed in <> designate the value,
and words in italics simply give an explanation and are not part of the output:

I) “DATA-DUMP PACKAGING” this is a title for the section.

A) “ FOR:” this is a subtitle - indented X 1.

1) “ Instrument Model: ” <string> where the sting represents a
description of the instrument model - indented X 2. This string
should be identical to that received via Function InstInfo of class
clsInstPubInterface.

2) “ Data-dump Packaging Version: ” <value> where “value”
represents the version number of the measurement-data packaging
- integers only - indented X 2 .

3) “ Date version originated: ” <MM-DD-YY> where MM=
month, DD=day, YY=year, and must be represented by two digits
for each value. (e.g., Date version originated 01-15-03) - indented
X 2.

B) “FORMAT:” this is a subtitle - indented X 1

1) “DATA HEADER:” this is a subtitle - indented X 2

“ Header var #1 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

63

“ Header var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Header var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the header variable,
description is a string describing what the variable
represents, and units is a string describing the units.

2) “DATA:” this is a subtitle - indented X 2

a) “Number of Variables: ” <value> where value represents
the number of independent and dependent data variables -
indented X 3.

b) Description of the variables:

“ Variable #1 ” <description>; <type>; <# of bytes>; ,
(<units>) - indented X 3

“ Variable #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Variable #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic
variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the variable, description is
a string describing what the variable represents, and units is
a string describing the units.

c) “ Order ” <sequential | alternated> where the order is
either sequential (all of the values for variable #1 written
first, then all the values for variable #2, etc) or alternated
(first value of all variables written first, followed by second
value of all variables, etc.) - indented X 3

3) “DATA FOOTER:” this is a subtitle - indented X 2

“ Footer var #1 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Footer var #2 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

“ Footer var #3 ” <description>; <type>; <# of bytes>;
(<units>) - indented X 3

etc., where type is a string describing the Visual Basic

64

variable type (e.g. integer, long, double, etc), # of bytes
designates the number of bytes in the footer variable,
description is a string describing what the variable
represents, and units is a string describing the units.

EXAMPLE:

MEASUREMENT-DATA PACKAGING

FOR:

Instrument Model: HP9566

Data-dump Packaging Version: 1

Date version originated: 01-23-03

FORMAT:

DATA HEADER:

Header Var #1: Preamble; character bytes “RSMS4G_DataPreamble”;byte array
preceded by a carriage return (hex 0d), a linefeed (hex 0a), another carriage return
(hex 0d), and another linefeed (hex 0a) and terminated with a null character (hex
00); variable; (none)

Header Var #2: version number; numerical characters terminated with a null
character; variable; (none)

Header Var #2: Instrument ActiveX file responsible for packaging the information;
characters terminated with a null character; variable; (none)

Header Var #3: number of data bytes - including data header, data, and data footer;
numerical characters terminated with a null character; variable;(none)

DATA:

Number of Variables: 3

Variable #1: Frequency; double; 8 bytes; (MHz)

Variable #2: Trace A Magnitude; double; 8 bytes; (dBm)

Variable #3: Trace B Magnitude; double; 8 bytes; (dBm)

Order: alternated

DATA FOOTER

Footer var #1: CRC of data; byte array; 4;(none)

MEASUREMENT-DATA PACKAGING

FOR:

Instrument Model: HP9566

Data-dump PackagingVersion: 2

65

Date version originated: 06-10-03

FORMAT:

DATA HEADER:

Header Var #1: Preamble; character array “RSMS4G_DataPreamble”; byte array
preceded by a carriage return (hex 0d), a linefeed (hex 0a), another carriage return
(hex 0d), and another linefeed (hex 0a) and terminated with a null character (hex
00); variable; (none)

Header Var #2: version number; numerical characters terminated with a null
character; variable;(none)

Header Var #2: Instrument ActiveX file responsible for packaging the information;
characters terminated with a null character; variable; (none)

Header Var #3: number of data bytes - including data header, data, and data footer;
numerical characters terminated with a null character; variable;(none)

DATA:

Number of Variables: 2

Variable #1: Frequency; double; 8 bytes; (MHz)

Variable #2: Magnitude; double; 8 bytes; (dBm)

Order: sequential

DATA FOOTER

Footer #1: CRC of data; byte array; 4;(none)

WE SHOULD ADD SOMETHING LIKE THE FOLLOWING FOR GETTING THE
INSTRUMENT SETUP PARAMETERS

ff. Public Function GetCoreData(ByRef FrmtColmns as Integer, ByRef
FrmtRows as Long, ByRef FrmtMode as Integer, ByRef FrmtVarType() as
Integer, ByRef FrmtVarLabels() as VarLabels, ByRef FrmVarUnits() As
VarUnits) As Byte(): This function returns an array of bytes containing only
the data - without a header - the purpose being to provide un-packaged data
for data processing routines. The data will represent the actual value and will
not require scaling and/or offset. The data will also be raw, meaning that it is
not corrected by any calibration factor. All independent and dependent
variables will have the same vector length, so that, for every value in the
independent variable, there are corresponding values in each dependent
variable. The array of bytes is formatted in a manner described by the
variables in the argument list. These are as follows:

(1) FrmtColmns: This is an integer returned by reference that designates the
number of data variables (columns).

(2) FrmtRows: This is a long integer returned by reference that designates

